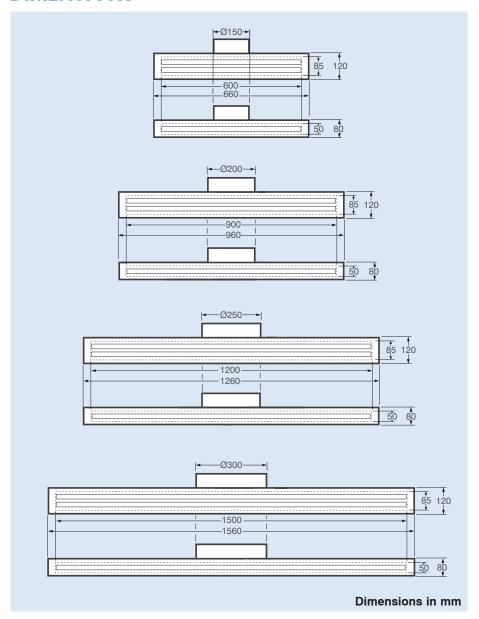
# RICKARD ELECTRONIC VAV DIFFUSER SERIES

### LINEAR SLOT ELECTRONIC VAV CEILING DIFFUSERS

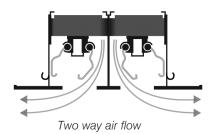


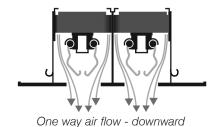
#### **DESCRIPTION**

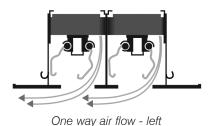

Rickard linear slot diffusers are an effective way to distribute conditioned air into the perimeter zones of a building, which typically have the most demanding temperature control requirements. These diffusers have a slim, attractive design that complements most architectural styles. They are also designed to prevent drafts, operate quietly, and are highly efficient.

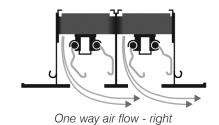
Air volume is controlled by opening and closing vanes driven by an electric actuator. This adjusts the aperture size and varies the volume of conditioned air entering the occupied space.

#### **Features**


- Air flow direction from diffuser can be easily adjusted by the occupant.
- Available in one or two slots and widths ranging from 660 to 1560mm.
- Air discharge volumes from 10% to 100% can be achieved.


### **DIMENSIONS**





# RICKARD ELECTRONIC VAV DIFFUSER SERIES

#### **AIR FLOW DIRECTION**









#### SPECIFICATIONS AND PERFORMANCE

|              |      | Product Numbers       |                      |                   | Neck Pressure (Pa) |     |     |     |          | Neck Pressure (Pa)                 |     |     |     |            | Neck Pressure (Pa) |      |      |      |      |
|--------------|------|-----------------------|----------------------|-------------------|--------------------|-----|-----|-----|----------|------------------------------------|-----|-----|-----|------------|--------------------|------|------|------|------|
| Neck<br>Size | Size | Single Slot<br>(80mm, | Dual Slot<br>(120mm, |                   |                    |     |     |     | <b>—</b> | <b>↑</b> ↑↓ <b>↑ ↑</b> ↓↓ <b>♦</b> |     |     |     | <b>***</b> |                    |      |      |      |      |
| (mm)         | (mm) | high)                 | high)                |                   | 30                 | 40  | 50  | 60  | 70       | 30                                 | 40  | 50  | 60  | 70         | 30                 | 40   | 50   | 60   | 70   |
|              |      |                       |                      | Air flow<br>(L/s) | 41                 | 48  | 53  | 59  | 64       | 54                                 | 62  | 69  | 76  | 82         | 41                 | 48   | 53   | 59   | 64   |
| 150          | 600  | VLN6001/1-V2          | VLN6001/2-V2         | Throw (m)         | 4.5                | 4.8 | 5.1 | 5.4 | 5.6      | 3.2                                | 3.4 | 3.6 | 3.8 | 3.9        | 6.4                | 6.9  | 7.3  | 7.6  | 7.9  |
|              |      |                       |                      | NC Level<br>(NC)  | 30                 | 33  | 35  | 37  | 39       | 30                                 | 33  | 35  | 37  | 39         | 30                 | 33   | 35   | 37   | 39   |
|              |      |                       |                      | Air flow<br>(L/s) | 71                 | 82  | 92  | 99  | 108      | 85                                 | 98  | 109 | 120 | 129        | 71                 | 82   | 92   | 99   | 108  |
| 200          | 900  | VLN9001/1-V2          | VLN9001/2-V2         | Throw (m)         | 5.5                | 5.9 | 6.3 | 6.6 | 6.8      | 3.9                                | 4.2 | 4.4 | 4.6 | 4.8        | 7.8                | 8.4  | 8.9  | 9.3  | 9.7  |
|              |      |                       |                      | NC Level<br>(NC)  | 32                 | 35  | 37  | 39  | 41       | 32                                 | 35  | 37  | 39  | 41         | 32                 | 35   | 37   | 39   | 41   |
|              |      |                       |                      | Air flow<br>(L/s) | 96                 | 111 | 124 | 135 | 146      | 118                                | 137 | 153 | 168 | 181        | 96                 | 111  | 124  | 135  | 146  |
| 250          | 1200 | VLN12001/1-V2         | VLN12001/2-V2        | Throw (m)         | 6.4                | 6.9 | 7.3 | 7.6 | 7.9      | 4.5                                | 4.8 | 5.1 | 5.4 | 5.6        | 9.0                | 9.7  | 10.3 | 10.7 | 11.2 |
|              |      |                       |                      | NC Level<br>(NC)  | 33                 | 36  | 38  | 40  | 42       | 33                                 | 36  | 38  | 40  | 42         | 33                 | 36   | 38   | 40   | 42   |
|              |      |                       |                      | Air flow<br>(L/s) | 118                | 136 | 151 | 166 | 179      | 155                                | 179 | 199 | 218 | 236        | 118                | 136  | 151  | 166  | 179  |
| 300          | 1500 | VLN15001/1-V2         | VLN15001/2-V2        | Throw (m)         | 7.1                | 7.7 | 8.1 | 8.5 | 8.8      | 5.0                                | 5.4 | 5.7 | 6.0 | 5.2        | 10                 | 10.8 | 11.5 | 12.0 | 12.5 |
|              |      |                       |                      | NC Level<br>(NC)  | 34                 | 37  | 39  | 41  | 43       | 34                                 | 37  | 39  | 41  | 43         | 34                 | 37   | 39   | 41   | 43   |

Performance data applicable for Dual Slot Linear Diffusers only

Throw data is taken 25mm below the ceiling on a line through the centre of the diffuser with the vanes fully open & an air velocity of 0.25m/s.

Noise criteria levels apply to a single diffuser mounted in a room having a Sound Absorption of 10dB in octave bands having centre frequencies from 125Hz to 8000Hz (ie. the difference between Sound Pressure Level (dB re: 10-6 Pa) and Sound Pressure Level (dB re: 10-12 Pa) is equal to 10dB). These levels represent only the noise generated by the diffuser and do not take into account any duct-borne noise.

Diffusers are factory set for a minimum of 30% of the maximum flow levels reflected above. It should be noted that minimum air flow settings are approximate & may require to be reset on site to compensate for actual site system pressures.